Как отмыть полимерный изолятор

В ходе исследований обнаружена грибковая природа загрязнений.
Сегодня наши петербургские авторы дают рекомендации по режиму эксплуатации имеющихся изоляторов, а также по разработке устойчивых к грибковому поражению материалов защитного покрытия и по микроскопическому контролю качества поверхности изготавливаемых изоляторов.
Рис. 1
Опорные полимерные изоляторы типа ИОСПК 10-110/480- II-УХЛ1 в составе разъединителя горизонтально поворотного типа. Видны загрязненные и чистые ребра
Высоковольтная полимерная изоляция в настоящее время интенсивно внедряется в энергосистемы практически всех стран мира. В России применение полимерных изоляторов получило важное специфическое направление, связанное с использованием опорных изоляторов всех классов напряжения до 220 кВ включительно. Причиной этого являются сложные климатические (главным образом, температурные) условия, вызывающие разрушение традиционно использовавшихся фарфоровых изоляторов, что уже привело к многочисленным авариям на действующих подстанциях. Применение полимерных изоляторов вместо фарфоровых позволяет повысить надежность подстанций, однако требует учета специфических свойств полимерных материалов, проявляющихся при длительной эксплуатации.
Изготовленные из полимерных материалов защитные оболочки опорных изоляторов обладают высокой химической стойкостью, широким температурным диапазоном и, что очень важно, высокой гидрофобностью. С другой стороны, в зависимости от большого числа различных факторов однотипные изоляторы компаний-производителей существенно различаются по качеству. Причем определить действительное состояние изделия можно лишь в результате испытаний, нередко требующих значительных средств и сложного оборудования. Более того, к снижению качества изоляторов могут привести нарушения технологического режима, обнаружить которые в готовом изделии существующими средствами крайне затруднительно, а стандартизированными испытательными процедурами просто невозможно.
В качестве примера можно указать на аномально высокую загрязняемость опорных полимерных изоляторов в некоторых районах Южной Карелии. Карельский перешеек и Южная Карелия – это территория к северу от Санкт-Петербурга, ограниченная Финским заливом Балтийского моря и Ладожским озером. Здесь расположен ряд населенных пунктов, а также промышленные предприятия по заготовке леса и добыче гранита. Энергоснабжение этих объектов осуществляется по воздушным линиям электропередачи 110 кВ и распределительным сетям 35 и 10 кВ с помощью ряда понижающих подстанций.
Начиная с 2002 года некоторые из этих подстанций были снабжены опорными полимерными изоляторами (ОПИ) 35 и 110 кВ, выполняющими функции шинных опор, а также опорно-поворотных элементов в разъединителях горизонтально-поворотного типа РНД и РНДЗ (рис. 1). В общей сложности в настоящее время на пяти обследованных в ходе выполнения настоящей работы подстанциях системы ОАО «Карелэнерго» установлены более 300 ОПИ, причем замена традиционных фарфоровых изоляторов на полимерные происходила ежегодно практически одинаковыми партиями. В эксплуатации находятся ОПИ четырех различных российских производителей. Часть ОПИ изготовлена методом пореберной сборки, а другая часть – методом отливки. Защитная оболочка ОПИ светло-серого и синего цвета изготовлена из кремнийорганической резины высокотемпературной вулканизации (HTV).
АНОМАЛЬНЫЕ ЗАГРЯЗНЕНИЯ ОПИ
В процессе эксплуатации было замечено, что с течением времени установленные ОПИ покрываются загрязнениями, состоящими из отдельных пятен черного цвета диаметром до 20 мм. На рис. 1 видны только нижние поверхности ребер, однако загрязнения в равной степени покрывают и верхнюю поверхность, концентрируясь на внешней периферии ребер. Вертикальные цилиндрические поверхности загрязнены в несколько меньшей степени. Постепенно увеличиваясь в размерах, на некоторых ОПИ за пять лет эксплуатации пятна загрязнений покрыли поверхность полимерной защитной оболочки сплошным слоем, что вызвало необходимость специальных работ по очистке этих изоляторов.
Наличие и концентрация загрязнений не связаны с ориентацией поверхности относительно внешнего электрического поля или относительно розы ветров, не зависят от расположенных рядом предметов или области преимущественной освещенности. Поскольку аналогичные процессы возникновения пятен имеют место на всех ОПИ в различной степени, наблюдения не позволили также связать загрязняемость ОПИ с какой-либо из фирм-изготовителей. Наиболее действенным установленным эксплуатационным фактором, оказывающим влияние на загрязняемость ОПИ, является длительность эксплуатации: чем она больше, тем сильнее увеличиваются размеры, плотность почернения и концентрация пятен загрязнений. Кроме того, была отмечена зависимость интенсивности загрязнений ОПИ от расстояния до места проведения карьерных (в том числе взрывных) работ на горно-добывающем предприятии по добыче гранита: наибольшее число сильно загрязненных изоляторов и наибольшая степень загрязнения наблюдаются на подстанции № 93 «Карьерная», расположенной на расстоянии 1,5–2 км от места проведения работ. На подстанции «Лахденпохья», расположенной на расстоянии более 30 км от места горных разработок, уровень загрязняемости ОПИ в целом заметно ниже.
Важно заметить, что на ряде изоляторов отмечено существенное различие загрязняемости ребер: наряду с ребрами, покрытыми пятнами загрязнений, имеются ребра, практически свободные от загрязнений (рис. 1). Во всех случаях это различие наблюдалось исключительно на изоляторах, изготовленных по методу пореберной сборки, эксплуатируемых в течение наиболее длительного времени (выпуск 2002 г., эксплуатация с 2003 г.). На изоляторах, изготовленных методом литья, такого не наблюдается. При этом плотность загрязнений на ребрах соответствует общей отмеченной выше тенденции к усилению загрязняемости при увеличении длительности эксплуатации, в то время как чистые ребра явно выпадают из этой зависимости, сохраняя свое исходное чистое состояние значительно лучше, чем другие изоляторы, установленные позже. Загрязнения в виде пятен также крайне незначительны (практически отсутствуют) на поверхности размещенных рядом фарфоровых опорных изоляторов, несмотря на то, что в эксплуатации они находились намного дольше (10–15 лет). В целом общий уровень загрязняемости фарфоровых опорных изоляторов значительно ниже, чем у полимерных.
Несмотря на наличие загрязнений, поверхность ОПИ в полной мере сохраняет гидрофобность: вода концентрируется на ней в виде обособленных капель, в то время как на фарфоровых изоляторах образует ровную пленку. Гидрофобность поверхности ОПИ была полностью восстановлена даже после испытаний на трекингоэрозионную стойкость, связанных с длительным воздействием электрической дуги. При этом высокой гидрофобностью обладает не только собственно поверхность полимерного материала, но и возникшие на ней загрязнения, что является проявлением известного свойства силиконовой резины передавать гидрофобность. Это объясняется сложной молекулярной структурой материала, в составе которого присутствуют, наряду с прочной полимерной решеткой, легкие, не связанные с ней молекулы. Они, обладая способностью к диффузии, перемещаются внутри защитного слоя, выходят на поверхность и обволакивают находящиеся на ней частицы. Таким образом, наблюдаемые в данном случае загрязнения оказываются гидрофобными в такой же степени, как чистая поверхность материала защитной оболочки.
При испытаниях на трекингоэрозионную стойкость в соответствии с ГОСТ 27473-87 по классу 4,5 кВ, образцы материала защитного покрытия были подвергнуты интенсивному воздействию частичными дужками, причем показали высокую стойкость. Разрушения поверхности имеют явно выраженный эрозионный характер без образования проводящего трека и минимальные масштабы. Следы эрозии на поверхности имеют форму канавки глубиной не более 0,3 мм и шириной 1,5–2,5 мм. В ходе испытаний эксплуатационные загрязнения в местах стекания потока электролита были частично смыты, при этом обнажилась гладкая чистая поверхность образца, а загрязнения сохранились только в отдельных точках и диаметром не более 100 мкм. Во время испытаний и по полученным результатам не было указаний на фиксацию поверхностных разрядов на следах эксплуатационных загрязнений. Результаты испытаний показали, что материал покрытия удовлетворяет предъявляемым нормативным требованиям независимо от отсутствия или наличия загрязнений.
Сохранение высокого эксплуатационного качества поверхности ОПИ подтверждается отсутствием информации о повышенной интенсивности перекрытий загрязненных изоляторов, поскольку единственным указанием на их отличие от «чистых» изоляторов служит факт появления загрязнений, но не повышенная аварийность, связанная с перекрытиями.
Источник
Эксплуатация зарубежных полимерных изоляторов
Осмотр и профилактика
Зарубежные эксплуатационные организации сообщают о проводимых ими регулярных осмотрах с заданной периодичностью эксплуатируемых некерамических изоляторов с целью принятия необходимых мер (чистка изоляторов , их демонтаж для исследований или замены и т.д ).
Первоначально считалось, что в чистке (обмыве) некерамических изоляторов в процессе эксплуатации нет необходимости. В настоящее время за рубежом повсеместно признается, что периодическая чистка необходима для продления срока службы изоляторов. При этом перед чисткой эксплуатационники должны получить консультацию производителей об их продукции. Большинство конструкций может подвергаться сухой чистке,например , обдувом абразивным материалом ( в США чаще всего измельченной кукурузой ), однако далеко не все типы некерамических изоляторов могут обмываться водой под высоким давлением. В частности , как уже указывалось , у изоляторов с модульной сборкой юбок после обмыва высоким давлением может происходить трекинг стеклопластикового стержня.
В США в действующие Руководящие указания IEEE по чистке изоляторов внесен проект раздела, касающийся обмыва высоким давлением некерамических изоляторов с оболочками из EPDM или EPDM / EPR раздельно для модульно и цельно отлитых изоляторов. Обмыв силиконовых изоляторов по этим рекомендациям должен производиться только при низком или среднем давлении.
Дальнейшее изложение вопросов эксплуатации некерамических изоляторов в основном построено на основе указанного американского руководства. При обмыве некерамических изоляторов струя воды должна перемещаться в направлении сверху вниз. К сожалению эти рекомендации не всегда можно реализовать в эксплуатационных условиях на ВЛ , т.к. некерамические изоляторы часто взаимозаменялись и на расстоянии нелегко установить тип оболочки. Как правило , выбор метода обмыва производится на месте руководителем бригады.
Перед установкой в эксплуатацию новые некерамические изоляторы обычно не требуют очистки. Однако , если они запылились при хранении , достаточно обтереть их влажной тряпкой. Если новые изоляторы перед установкой очень грязные и обтирание влажной тряпкой недостаточно , то может быть использован слабый раствор очистителя , но потом он должен быть тщательно удален с поверхности чистой водой. Применять для чистки некерамических изоляторов какие-либо растворители не рекомендуется. В некоторых районах на эксплуатируемых изоляторах может образоваться плотный слой загрязнения , который может быть удален обмывом слабым раствором отбеливающей хлорной жидкости ( 1 часть на 4 части воды ). Обмыв может сопровождаться легким поскребыванием ветошью или мягкой щеткой и производиться легким обрызгиванием изолятора раствором из ручного пульверизатора. При этом необходимо обеспечить неповреждаемость концевой заделки изолятора. После чистки изолятор должен быть тщательно обмыт чистой водой.
При монтаже изоляторов необходимо исключить контакт поверхности изолятора с острыми (режущими) предметами и с абразивными поверхностями. Изоляторы при этом должны подниматься за оконцеватели. Полимерные опорные изоляторы могут быть осторожно подняты в горизонтальном положении двумя нейлоновыми ремнями , при этом следует избегать возникновения изгибающих усилий.
Повреждения изоляторов
Если на устанавливаемом в эксплуатацию изоляторе имеются зарубки, посечки или вдавливания поверхности , изолятор необходимо отложить для внимательной проверки и возможного ремонта. Изоляторы даже со слабо обнаженным стеклопластиковым стержнем должны быть забракованы и заменены. С земли серьезные повреждения от стрельбы легко видны невооруженным глазом , но для обнаружения слабого повреждения стержня обычно требуется бинокль. Эти изоляторы также должны быть заменены , т.к. деффект может прогрессировать из-за воздействия влаги и привести к поломке или трекингу стеклопластикового стержня. В некоторых конструкциях при эксплуатации могут возникнуть трещины юбок и /или оболочки вследствие воздействия УФ лучей , токов утечки или короны. Эти изоляторы должны быть заменены.
Повреждения из-за перекрытий в большинстве случаев трудно выявить с земли , хотя иногда повреждения очевидны и ясно , что изолятор должен быть заменен. Как правило , юбки или оболочки не повреждаются , пока не произойдет электрический пробой изолятора , например , в случае излома стержня. В этой ситуации оболочка изолятора вспучивается , т.к. внутри стержня образуется газ под давлением. Обычно повреждения при перекрытиях ограничиваются металлическими оконцевателями изолятора и / или дугозащитной арматурой. Этот тип повреждений с земли выявить трудно , однако усиленная слышимая корона дает указание на то , что изолятор должен быть заменен. В некоторых случаях повреждаются концевые заделки и если стержень становится видимым или разгерметизирование очевидно , изолятор должен быть заменен. Во время периодических осмотров выявленные изоляторы , оболочка которых обесцвечена из-за солнечных лучей , или имеющие на поверхности загрязнение , плесень , незначительные повреждения юбок из-за стрельбы или сколов в срочной замене не нуждаются. Некерамические изоляторы с незначительными повреждениями оболочки или юбок могут быть отремонтированы.
Слабыми в США и Канаде считаются повреждения оболочки (или юбки) диаметром до одного дюйма. Изоляторы с любыми повреждениями стеклопластикового стержня ремонту не подлежат и в электроустановках применяться не могут. Методика ремонта некерамических изоляторов в основном состоит в следующем. Подготовку поврежденного места начинают с тщательного удаления рыхлого материала , окружающего повреждение ( разрезанием и соскабливанием до гладкости) , при этом очень важно не повредить стеклопластиковый стержень. Материалы , прочно не сцепленные со стержнем , должны быть удалены. После этого поверхность должна быть начисто протерта чистой ветошью , смоченной изопропиловым спиртом. Ремонт состоит в заполнении раковины RTV – силиконовой резиной и замазывании её компаундом , предназначенным для наружного использования в электротехнических устройствах. Такие замазки имеют высокое наполнение тригидратом алюминия. После ремонта обработанное место должно быть защищено от грязи и влаги до полного сшивания полимера. Обычно для полного сшивания необходимо 24 часа , после чего изолятор может устанавливаться в эксплуатацию. Металлическая арматура и оконцеватели , имеющие повреждения , ремонту не подлежат.
За рубежом известен ряд случаев, когда после установки на ВЛ со снятым напряжением, некерамические изоляторы повреждались сразу после подачи на них напряжения. Поэтому в США перед установкой новых некерамических изоляторов в эксплуатацию на ВЛ (с учетом того , что каждый из них прошел заводские испытания) рекомендуется провести испытания каждого изолятора высоким напряжением. При этих испытаниях после предварительной протирки ветошью , смоченной в изопропиловом спирте, и проверки на отсутствие внешних повреждений на каждый изолятор подается 1,5 номинального фазного напряжения ВЛ , выдерживаемого в течение 3 -х минут с записью тока утечки. Во время испытаний не должно быть перекрытий , а малые колебания тока утечки считаются нормальным явлением. Однако , если при испытаниях ток утечки возрастает во времени , это указывает на дефект внутри изолятора , и такой изолятор возвращается производителю как дефектный. После испытаний рекомендуется сделать отметку о прохождении испытания нанесением окрашенной полосы на каждый оконцеватель. Испытанные изоляторы должны быть помещены в специальные контейнеры для безопасной транспортировки на ВЛ. Это может быть , например , ПВХ – труба с заглушками на концах , такая труба может использоваться многократно. Видимое повреждение защитной трубы может указывать на возможное повреждение изолятора в трубе.
Источник
Чистка вручную производится в случаях невозможности применения обмыва изоляции струей воды или малой эффективности последнего чистой сухой ветошью при пылевых несцементировавшихся загрязнениях, а при наличии на поверхности изоляторов трудноудаляемых пленок — ветошью или кистью, смоченными различными растворителями (табл. 1).
Обмыв изоляторов ВЛ до 500 кВ включительно производится специально обученным персоналом струей воды под давлением 0,5 — 1 МПа (5 —10 кгс/см2) при минимально допустимых расстояниях по струе воды между насадкой и обмываемым изолятором (табл. 2).
Таблица 1. Препараты для чистки изоляторов
Наименование препарата | Область применения | Состав и способ приготовления | Методика | Примечание |
Паста из отмученной глины и соляной кислоты | Загрязнения на щелочной основе, известковая и содовая пыль | Смесь 70% по массе сухой отмученной глины с 30% водного (20 %-ного) раствора соляной кислоты | Паста наносится и растирается кистью по поверхности изолятора, через 10-15 мин удаляется мокрой тряпкой. Изолятор промывается теплой водой и вытирается насухо | Для увеличения выдержки пасты на поверхности изолятора до 20— 30 мин в нес добавляют трансформаторное масло |
Раствор тринатрий- фосфата | Загрязнения от ТЭЦ и алюминиевых комбинатов, смолистые отложения | 10%-ный раствор тринатрий-фосфата | Промывка в течение 15 — 20 мин демонтированных изоляторов в горячем (60 — 70 °С) растворе | Предложен Свердловэнерго |
Раствор КЖВ | Уносы ТЭЦ, работающих на сернистом топливе, с одновременным воздействием загрязнений химического производства | Смесь 5 %-ного раствора соляной кислоты и жавелевой воды в пропорции 3 :2. Смесь до применения выдерживается на воздухе в течение 5—6 ч | Раствор наносят на поверхность изолятора кистью или тряпкой, после чистки изолятора — обмывка теплой водой | Предложен Армглавэнерго |
Раствор соляной кислоты | Плотные сернистые и углекислые уносы металлургических, коксо-химических комбинатов и ТЭЦ, цементная пыль, подвергшаяся схватыванию | 10%-ный раствор соляной кислоты | Очистка поверхности изолятора тряпкой, смоченной в растворе, последующая обильная промывка поверхности изолятора теплой водой | |
Бензин, керосин | Смолистые, жирные отложения | Очистка поверхности изолятора тряпкой, смоченной растворителями, с последующей протиркой сухой ветошью | ||
Трансформаторное и турбинное масло | Уносы цементных заводов | – | Очистка тряпкой, смоченной маслом | – |
Таблица 2. Минимальные расстояния при обмыве изоляторов
Диаметр выходного отверстия насадки, мм | Минимально допустимое расстояние по струе, м, при напряжении ВЛ, кВ | |||||
До 10 | 35 | 110-150 | 220 | 330 | 500 | |
10 | 3 | 4 | 5 | 6 | 7 | 8 |
12 | 3,5 | 4,5 | 6 | 8 | 9 | 10 |
14 | 4 | 5 | 6,5 | 8,5 | 9,5 | 11 |
16 | 4 | 6 | 7 | 9 | 10 | 12 |
При обмыве внешней изоляции ОРУ под напряжением удельная проводимость воды должна быть не выше 1400 мкОм/см для ОРУ 35 кВ и не более 700 мкОм/см для ОРУ, 110-500 кВ.
Периодичность ручной очистки изоляторов или их обмыва определяется по результатам измерения удельной поверхности проводимости слоя загрязнения изоляторов.
Покрытие изоляторов гидрофобными пастами (табл. 3 и 4) и смазками (турбинные и трансформаторные масла) рекомендуется для ОРУ 110 кВ и выше, расположенных в зонах с IV СЗА и выше при цементирующихся уносах, в зонах уносов химических предприятий с большим содержанием в выбросах легкорастворимых веществ, приводящих к существенному повышению проводимости естественных осадков.
Покрытие изоляторов ОРУ смазками может осуществляться под рабочим напряжением с помощью специальных изолирующих штанг, снабженных компрессором. Конструкции таких штанг разработаны в Уралтехэнерго, Донбассэнерго и в ряде других энергосистем. Получило применение нанесение латексных покрытий на изоляторы КРУН 6 — 10 кВ, эксплуатируемых в зонах III—V СЗА. Латекс СКЭПГ — водный раствор синтетического каучука этиленпропиленового тройною наносится в сухую погоду при температуре от минус 10 до плюс 30 °С вручную кистью на чистую сухую поверхность изолятора. Толщина слоя пасты — 0,1 —0,2 мм. Продолжительность высыхания пасты 15 — 20 мин. При повреждении старого слоя зачищаются его края и наносится новый слой.
Таблица 3. Гидрофобные пасты для обработки изоляторов
Марка пасты | Состав пасты | Норма расхода пасты, г/дм2, для зоны загрязнения | Стоимость 1 кг пасты, руб. | Толщина | Завод- | |
III, IV | V, VI | |||||
КВ-3 | Кремний-органическая жидкость ПМС, загущенная аэро- силом | 5/3 | 5/3 | 14 | 0,5/0,2 | Завод «Кремнеполимер» |
кпд | То же | 5/3 | 5/3 | 12 | 0,5/0,3 | То же |
КПИ | Кремний-органическая жидкость, ПМС и 1,2% борной кислоты | — | 6 | 0,5 | » » | |
ГПИ-1 | Жидкие и твердые углеводороды | 10/10 | 20/20 | 3 | 1/2 | Московский нефте-маслозавод (МНМЗ) |
ОРГРЭС-150 | Минеральные и кремний-органические масла, загущенные аэросилом и церезином | 10/10 | 20/20 | 7 | 1/2 | То же |
Примечание. Норма расхода пасты и толщина слоя пасты указаны в числителе для зоны умеренного климата, в знаменателе для зоны жаркого климата.
Таблица 4. Разовая потребность в пасте для обработки одного изолятора или трансформатора тока
Тип изолятора или трансформатора тока | Площадь | Количество пасты, г/изолятор, необходимое для обработки изоляторов в районах с V и VI степенями загрязнения | |||
Зона умеренного климата | Зона жаркого климата | ||||
ОРГРЭС-150 | КПД | ОРГРЭС-150. | КПД | ||
ПФ6-Б (ПМ,5) | 13 | 260 | 65 | 260 | 39 |
ПФ6-А (П-4,5) | 13 | 260 | 65 | 260 | 39 |
ПФ6-В (ПФЕ-4,5) | 18 | 360 | 90 | 360 | 54 |
ПФ10-А | 22 | 440 | 110 | 440 | 66 |
ПФ20-А (ПФЕ-16) | 29 | 580 | 145 | 580 | 87 |
ПФГ-6А (НС-2) | 25 | 500 | 125 | 500 | 75 |
ПФГ8-А | 27 | 540 | 135 | 540 | 81 |
ПФГ6-А | 26 | 320 | 130 | 320 | 78 |
ОНСУ-10-300 | 18 | 360 | 90 | 360 | 54 |
КО-10 | 13 | 260 | 65 | 260 | 39 |
ОНС-20-500 | 17 | 340 | 85 | 340 | 51 |
ОНС-20-2000 | 26 | 520 | 130 | 520 | 78 |
НОС-35-500 | 31 | 620 | 155 | 620 | 93 |
НОСУ-35-500 | 57 | 1400 | 285 | 1400 | 174 |
ОНС-35-1500 | 50 | 1000 | 250 | 1000 | 150 |
ОНС-35-2000 | 50 | 1000 | 250 | 1000 | 150 |
НОС-110-400 | 102 | 2040 | 510 | 2040 | 306 |
НОС-110-600 | 16 | 320 | 80 | 320 | 48 |
КО- 110-1500 | 13 | 260 | 65 | 260 | 39 |
ОНС-110-2000 | 11 | 220 | 55 | 220 | 33 |
ΤΦ3Μ-35 | 250 | 5000 | 1250 | 5000 | 750 |
ТФЗМ-220 | 170 | 3400 | 850 | 3400 | 540 |
ТФУМ-330 | 210 | 4200 | 1005 | 4200 | 630 |
ТФЗМ-500 | 272 | 5400 | 1360 | 5440 | 816 |
Источник